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Abstract. Every normal periodic tiling is a strongly balanced tiling. The prop-
erties of periodic tilings by convex polygons are rearranged from the knowledge

of strongly balanced tilings. From the results, we show the properties of repre-

sentative periodic tilings by a convex pentagonal tile.

1. Introduction

A collection of sets (the ‘tiles’) is a tiling (or tessellation) of the plane if their union
covers the whole plane but the interiors of different tiles are disjoint. If all the tiles in
a tiling are of the same size and shape, then the tiling is monohedral. In this study,
a polygon that admits a monohedral tiling is a polygonal tile. A tiling by convex
polygons is edge-to-edge if any two convex polygons in a tiling are either disjoint or
share one vertex (or an entire edge) in common. A tiling is periodic if it coincides
with its translation by a nonzero vector. The unit that can generate a periodic tiling
by translation only is known as the fundamental region [4, 13,16,17,19].

In the classification problem of convex polygonal tiles, only the pentagonal case
is open. At present, fifteen types of convex pentagon tiles are known (see Figure 1)
but it is not known whether this list is complete [2–13, 16, 20]. However, it has been
proved that a convex pentagonal tile that can generate an edge-to-edge tiling belongs
to at least one of the eight known types [1,14,17,18]. We are interested in the problem
of convex pentagonal tiling (i.e., the complete list of types of convex pentagonal tile,
regardless of edge-to-edge and non-edge-to-edge tilings). However, the solution of
the problem is not easy. Therefore, we will first treat only convex pentagonal tiles
that admit at least one periodic tiling1. As such, we consider that the properties of
the periodic tilings by convex polygons should be rearranged. From statement 3.4.8
(“every normal periodic tiling is strongly balanced”) in [4], we see that periodic tilings
by convex polygonal tiles (i.e., monohedral periodic tilings by convex polygons) are
contained in the strongly balanced tilings. The definitions of normal and strongly
balanced tilings are given in Section 2. In this paper, the properties of strongly
balanced tilings by convex polygons are presented from the knowledge of strongly

1 We know as a fact that the 15 types of convex pentagonal tile admit at least one periodic

tiling. From this, we find that the convex pentagonal tiles that can generate an edge-to-edge tiling
admit at least one periodic tiling [4,9, 13,14,16–19]. On the other hand, there is no proof that they

admit at least one periodic tiling without using this fact. That is, there is no assurance yet that all
convex pentagonal tiles admit at least one periodic tiling. In the solution of the problem of convex
pentagonal tiling, it is necessary to consider whether there is a convex polygonal tile that admits

infinitely many tilings of the plane, none of which is periodic.

1

ar
X

iv
:1

60
6.

07
99

7v
1 

 [
m

at
h.

M
G

] 
 2

6 
Ju

n 
20

16
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balanced tilings in general. That is, the properties correspond to those of periodic
tilings by a convex polygonal tile.

2. Preparation

Definitions and terms of this section quote from [4].
Terms “vertices” and “edges” are used by both polygons and tilings. In order not

to cause confusion, corners and sides are referred to instead of vertices and the edges
of polygons, respectively. At a vertex of a polygonal tiling, corners of two or more
polygons meet and the number of polygons meeting at the vertex is called the valence
of the vertex , and is at least three (see Figure 2). Therefore, an edge-to-edge tiling
by polygons is such that the corners and sides of the polygons in a tiling coincide with
the vertices and edges of the tiling.

Two tiles are called adjacent if they have an edge in common, and then each is
called an adjacent of the other. On the other hand, two tiles are called neighbors if
their intersection is nonempty (see Figure 2).

There exist positive numbers u and U such that any tile contains a certain disk of
radius u and is contained in a certain disk of radius U in which case we say the tiles
in tiling are uniformly bounded.

A tiling = is called normal if it satisfies following conditions: (i) every tiles of = is
a topological disk; (ii) the intersection of every two tiles of = is a connected set, that
is, it does not consist of two (or more) distinct and disjoint parts; (iii) the tiles of =
are uniformly bounded.

Let D(r,M) be a closed circular disk of radius r, centered at any point M of the
plane. Let us place D(r,M) on a tiling, and let F1 and F2 denote the set of tiles
contained in D(r,M) and the set of meeting boundary of D(r,M) but not contained
in D(r,M), respectively. In addition, let F3 denote the set of tiles surrounded by
these in F2 but not belonging to F2. The set F1 ∪ F2 ∪ F3 of tiles is called the patch
A(r,M) of tiles generated by D(r,M).

For a given tiling =, we denote by v(r,M), e(r,M), and t(r,M) the numbers of
vertices, edges, and tiles in A(r,M), respectively. The tiling = is called balanced if it
is normal and satisfies the following condition: the limits

lim
r→∞

v(r,M)

t(r,M)
and lim

r→∞

e(r,M)

t(r,M)

exist. Note that v(r,M)− e(r,M) + t(r,M) = 1 is called Euler’s Theorem for Planar
Maps.

Statement 1 (Statement 3.3.13 in [4]). Every normal periodic tiling is balanced.

Euler’s Theorem for Tilings (Statement 3.3.3 in [4]). For any normal tiling =,

if one of the limits v(=) = lim
r→∞

v(r,M)
t(r,M) or e(=) = lim

r→∞
e(r,M)
t(r,M) exists and is finite, then

so does the other. Thus the tiling is balanced and, moreover,

v(=) = e(=)− 1. (1)

For a given tiling =, we write th(r,M) for the number of tiles with h adjacents
in A(r,M), and vj(r,M) for the numbers of j-valent vertices in A(r,M). Then the
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Figure. 1. Fifteen types of convex pentagonal tiles. If a convex pentagon

can generate a monohedral tiling and is not a new type, it belongs to at

least one of types 1–15. Each of the convex pentagonal tiles is defined by

some conditions between the lengths of the edges and the magnitudes of

the angles, but some degrees of freedom remain. For example, a convex

pentagonal tile belonging to type 1 satisfies that the sum of three consec-

utive angles is equal to 360◦. This condition for type 1 is expressed as

A + B + C = 360◦ in this figure. The pentagonal tiles of types 14 and 15

have one degree of freedom, that of size. For example, the value of C of the

pentagonal tile of type 14 is cos−1((3
√

57−17)/16) ≈ 1.2099 rad ≈ 69.32◦.
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Figure. 2. The differences between corners and vertices, sides and edges,

adjacents, and neighbors. The points A, B, C, E, F , and G are corners

of the tile T ; but A, C, D, E, and G are vertices of the tiling (we note

that the valence of vertices A and G is four, and the valence of vertices C,

D, and E is three). The line segments AB, BC, CE, EF, FG, and GA are

sides of T , while AC, CD, DE, EG, and GA are edges of the tiling. The

tiles T1, T3, T4, T5, and T6 are adjacents (and neighbors) of T , whereas

tiles T2 and T7 are neighbors (but not adjacents) of T [4].

tiling = is called strongly balanced if it is normal and satisfies the following condition:
all the limits

th(=) = lim
r→∞

th(r,M)

t(r,M)
and vj(=) = lim

r→∞

vj(r,M)

t(r,M)

exist. Then, ∑
h≥3

th(=) = 1 and v(=) =
∑
j≥3

vj(=) (2)

hold. Therefore, every strongly balanced tiling is necessarily balanced.
When = is strongly balanced, we have

2e(=) =
∑
j≥3

j · vj(=) =
∑
h≥3

h · th(=). (3)

In addition, as for strongly balanced tiling, following properties are known.

Statement 2 (Statement 3.4.8 in [4]). Every normal periodic tiling is strongly bal-
anced.

Statement 3 (Statement 3.5.13 in [4]). For each strongly balanced tiling = we have
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1∑
j≥3

j · wj(=)
+

1∑
h≥3

h · th(=)
=

1

2
(4)

where

wj(=) =
vj(=)

v(=)
.

Thus wj(=) can be interpreted as that fraction of the total number of vertices in
= which have valence j, and

∑
j≥3

j · wj(=) is the average valence taken over all the

vertices. Since
∑
h≥3

th(=) = 1 there is a similar interpretation of
∑
h≥3

h · th(=): it is

the average number of adjacents of the tiles, taken over all the tiles in =. Since the
valence of the vertex is at least three,∑

j≥3

j · wj(=) ≥ 3. (5)

Statement 4 (Statement 3.5.6 in [4]). In every strongly balanced tiling = we have

2
∑
j≥3

(j − 3) · vj(=) +
∑
h≥3

(h− 6) · th(=) = 0,

∑
j≥3

(j − 4) · vj(=) +
∑
h≥3

(h− 4) · th(=) = 0,

∑
j≥3

(j − 6) · vj(=) + 2
∑
h≥3

(h− 3) · th(=) = 0.

3. Consideration and Discussion

A polygon with n sides and n corners is referred to as an n-gon. For the discussion
below, note that n-gons in a strongly balanced tiling do not need to be congruent
(i.e., the tiling does not need to be monohedral).

3.1. Case of convex n-gons. Let =sb
n be a strongly balanced tiling by convex n-gons.

Proposition 1.
∑
h≥3

h · th(=sb
n ) ≤ 6.

Proof. From (4), we have that

2
∑
h≥3

h · th(=sb
n )∑

h≥3
h · th(=sb

n )− 2
=
∑
j≥3

j · wj(=sb
n ).

Since the valence of the vertex is at least three, i.e.,
∑
j≥3

j · wj(=sb
n ) ≥ 3,

2
∑
h≥3

h · th(=sb
n )∑

h≥3
h · th(=sb

n )− 2
≥ 3 .
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Therefore, we obtain Proposition 1. �

From Proposition 1, there is no strongly balanced tiling that is formed by convex
n-gons for n ≥ 7, since the average number of adjacents is greater than six. Note that
the number of sides of all convex polygons in =sb

n does not have the same necessity.
For example, there is no strongly balanced tiling by convex 6-gons and convex 8-
gons, and there is no strongly balanced tiling by only convex 5-gons whose number
of adjacents is seven or more.

Note that Proposition 1 is not a proof that there is no convex polygonal tile with
seven or more sides. If there were a proof that all convex polygonal tiles admit at
least one periodic tiling, it could be used to prove that there is no convex polygonal
tile with seven or more sides from Proposition 1.

Proposition 2. 3 ≤
∑
j≥3

j · wj(=sb
n ) ≤ 2n

n−2 .

Proof. From (4) and
∑
h≥n

h · th(=sb
n ) ≥ n,

2
∑
j≥3

j · wj(=sb
n )∑

j≥3
j · wj(=sb

n )− 2
=
∑
h≥n

h · th(=sb
n ) ≥ n.

Therefore, from the above inequality and (5), we obtain Proposition 2. �

Let =sbe
n be a strongly balanced edge-to-edge tiling by convex n-gons.

Proposition 3.
∑
j≥3

j · wj(=sbe
n ) = 2n

n−2 .

Proof. The number of adjacents of all convex n-gons in =sb
n is equal to n. That is,∑

h≥n
h · th(=sbe

n ) = n. Then, (4) is 1∑
j≥3

j·wj(=sbe
n )

+ 1
n = 1

2 . Therefore, we obtain Proposi-

tion 3. �

3.2. Case of convex hexagons. As for =sb
6 (i.e., a strongly balanced tiling by convex

hexagons (6-gon)), the number of adjacents of each convex hexagon should be greater
than or equal to six (i.e., h ≥ 6). Therefore,∑

h≥6

th(=sb
6 ) = t6(=sb

6 ) +
∑
h≥7

th(=sb
6 ) = 1. (6)

On the other hand, from Proposition 1, we have∑
h≥6

h · th(=sb
6 ) = 6 · t6(=sb

6 ) +
∑
h≥7

h · th(=sb
6 ) ≤ 6. (7)

Proposition 4.
∑
j≥3

j · wj(=sb
6 ) = 3.

Proof. From (6) and (7),

6

1−
∑
h≥7

th(=sb
6 )

+
∑
h≥7

h · th(=sb
6 ) ≤ 6.
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Hence, we obtain
∑
h≥7

(h− 6) · th(=sb
6 ) ≤ 0. On the other hand,

∑
h≥7

(h− 6) · th(=sb
6 ) ≥

0 holds because th(=sb
6 ) = lim

r→∞
th(r,M)
t(r,M) ≥ 0. From these inequalities,∑

h≥7

(h− 6) · th(=sb
6 ) = 0.

Therefore, th(=sb
6 ) = 0 for h 6= 6. That is, we have

t6(=sb
6 ) = 1,

∑
h≥6

h · th(=sb
6 ) = 6 and

∑
h≥7

th(=sb
6 ) =

∑
h≥7

h · th(=sb
6 ) = 0.

Thus, from these relationships and (4), we arrive at Proposition 4. �

From Statement 2, a monohedral periodic tiling by a convex hexagon is strongly
balanced. If a fundamental region in a monohedral periodic tiling by a convex hexagon
has vertices with valences of four or more,

∑
j≥3

j · wj(=sb
6 ) > 3 and

∑
h≥6

h · th(=sb
6 ) < 6

from (4), which is a contradiction of Proposition 4. Thus, we have the following
corollary.

Corollary 1. A monohedral periodic tiling by a convex hexagon is an edge-to-edge
tiling with only 3-valent vertices.

It is well known that convex hexagonal tiles (i.e., convex hexagons that admit a
monohedral tiling) belong to at least one of the three types shown in Figure 3. That
is, convex hexagonal tiles admit at least one periodic edge-to-edge tiling whose valence
is three at all vertices. In fact, the representative tilings of the three types in Figure 3
are periodic edge-to-edge tilings whose valence is three at all vertices. From Corollary
1 and the fact that the valence of vertices is at least three, it might be considered that
the valence of all vertices in monohedral tilings by convex hexagons is three; however,
that is not true. For example, as shown Figure 4, there are monohedral tilings by
convex hexagons with vertices of valence equal to four (note that a monohedral tiling
is not always a periodic tiling). However, it is clear that the convex hexagonal tiles of
Figure 4 can generate a periodic edge-to-edge tiling in which the valence of all vertices
is three.

Figure. 3. Three types of convex hexagonal tiles. If a convex hexagon

can generate a monohedral tiling, it belongs to at least one of types 1–3.

The pale gray hexagons in each tiling indicate the fundamental region.
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Figure. 4. Monohedral tilings by convex hexagons with vertices of va-

lence equal to four.

3.3. Case of convex pentagons. As for =sb
5 (i.e., a strongly balanced tiling by

convex pentagons (5-gons)), the number of adjacents of each convex pentagon should
be greater than or equal to five. From Proposition 1, we obtain the following.

Proposition 5. 5 ≤
∑
h≥5

h · th(=sb
5 ) ≤ 6.

Since
∑
h≥5

h · th(=sb
5 ) is the average number of adjacents of the convex pentagons in

=sb
5 , we obtain the following theorem [15].

Theorem 1. A tiling =sb
5 contains a convex pentagon whose number of adjacents is

five or six.

Then, we obtain the following propositions.

Proposition 6. 5
2 ≤ e(=sb

5 ) ≤ 3.

Proposition 7. 3
2 ≤ v(=sb

5 ) ≤ 2.

Proof of Propositions 6 and 7. From (3) and Proposition 5, we have that 5 ≤
2e(=sb

5 ) ≤ 6. Since each strongly balanced tiling is necessarily balanced, v(=sb
5 ) =

e(=sb
5 )− 1 holds from Euler’s Theorem for Tilings (see P.2). Therefore, we have that

5 ≤ 2(v(=sb
5 ) + 1) ≤ 6. Thus, we obtain Propositions 6 and 7. �

Proposition 8. 3 ≤
∑
j≥3

j · wj(=sb
5 ) ≤ 10

3 .

Proof. It is clear from Proposition 2. �

Proposition 9. 0 ≤
∑
h≥7

(h− 6) · th(=sb
5 ) ≤ t5(=sb

5 ) ≤ 1.
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Proof. From Proposition 5,

5 ≤
∑
h≥5

h · th(=sb
5 ) = 5t5(=sb

5 ) + 6t6(=sb
5 ) +

∑
h≥7

h · th(=sb
5 ) ≤ 6. (8)

From (2), ∑
h≥3

th(=sb
5 ) = t5(=sb

5 ) + t6(=sb
5 ) +

∑
h≥7

th(=sb
5 ) = 1,

t6(=sb
5 ) = 1− t5(=sb

5 )−
∑
h≥7

th(=sb
5 ). (9)

From (8), (9) and 0 ≤ th(=sb
5 ) ≤ 1, we obtain the inequality of Proposition 9. �

From Proposition 9, we obtain the following theorem [15].

Theorem 2. A tiling =sb
5 that satisfies

∑
h≥7

th(=sb
5 ) > 0 contains a convex pentagon

whose number of adjacents is five.

As for =sbe
5 (i.e., a strongly balanced edge-to-edge tiling by convex pentagons), we

have the following proposition.

Proposition 10. t5(=sbe
5 ) = 1, v(=sbe

5 ) = 3
2 , e(=sbe

5 ) = 5
2 , and

∑
j≥3

j · wj(=sbe
5 ) = 10

3 .

Proof. It is clear from Proposition 3, Euler’s Theorem for Tilings (see P.2), and
th(=sbe

5 ) = 0 for h 6= 5. �

Next, we have other propositions as follows.

Proposition 11. v3(=sb
5 ) = 2 +

∑
j≥4

(2− j) · vj(=sb
5 ).

Proof. From (1) and the definition of v(=), we have

e(=sb
5 ) = v(=sb

5 ) + 1 =
∑
j≥3

vj(=sb
5 ) + 1 = v3(=sb

5 ) +
∑
j≥4

vj(=sb
5 ) + 1. (10)

On the other hand, from (3),

2e(=sb
5 ) =

∑
j≥3

j · vj(=sb
5 ) = 3v3(=sb

5 ) +
∑
j≥4

j · vj(=sb
5 ) (11)

holds. Therefore, from (10) and (11), we have

2

v3(=sb
5 ) +

∑
j≥4

vj(=sb
5 ) + 1

 = 3v3(=sb
5 ) +

∑
j≥4

j · vj(=sb
5 ).

Thus, we obtain Proposition 11. �

Proposition 12. v3(=sbe
5 ) =

∑
j≥4

(3j − 10) · vj(=sbe
5 ).
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Proof. From Proposition 10 and the definitions of wj (=) and v (=),

∑
j≥3

j · wj(=sbe
5 ) =

∑
j≥3

j · vj(=sbe
5 )

v(=sbe
5 )

=

3v3(=sbe
5 ) +

∑
j≥4

j · vj(=sbe
5 )

v3(=sbe
5 ) +

∑
j≥4

vj(=sbe
5 )

=
10

3
.

Thus, we obtain Proposition 12. �

As for v(=sb
5 ), we have the following propositions.

Proposition 13. v(=sb
5 ) =

∑
j≥3

vj(=sb
5 ) = 1

2

∑
h≥5

(h− 2) · th(=sb
5 ).

Proposition 14. v(=sb
5 ) = 1

2 + 1
2

∑
h≥5

(h− 3) · th(=sb
5 ).

Proposition 15. v(=sb
5 ) = 2 + 1

2

∑
h≥5

(h− 6) · th(=sb
5 ).

Proposition 16. v(=sb
5 ) = 2−

∑
j≥4

(j − 3) · vj(=sb
5 ).

Proof of Propositions 13, 14, 15, and 16. From the first equation in Statement 4,

2
∑
j≥4

(j − 3) · vj(=sb
5 ) +

∑
h≥5

(h− 6) · th(=sb
5 ) = 0.

Note that t3(=sb
5 ) = t4(=sb

5 ) = 0, since =sb
5 is h ≥ 5. The above equation is rearranged

as ∑
j≥4

(j − 3) · vj(=sb
5 ) = −1

2

∑
h≥5

(h− 6) · th(=sb
5 ). (12)

From the second equation in Statement 4,

−v3(=sb
5 ) +

∑
j≥5

(j − 4) · vj(=sb
5 ) +

∑
h≥5

(h− 4) · th(=sb
5 ) = 0.

The above equation is rearranged as∑
j≥5

(j − 4) · vj(=sb
5 ) = v3(=sb

5 )−
∑
h≥5

(h− 4) · th(=sb
5 ). (13)

Then, ∑
j≥4

(j − 3) · vj(=sb
5 ) = v4(=sb

5 ) +
∑
j≥5

(j − 4 + 1) · v(=sb
5 )

= v4(=sb
5 ) +

∑
j≥5

(j − 4) · v(=sb
5 ) +

∑
j≥5

vj(=sb
5 ).

(14)

By replacing
∑
j≥4

(j − 3) · vj(=sb
5 ) of (12) and

∑
j≥5

(j − 4) · vj(=sb
5 ) of (13) in (14), the

latter becomes

−1

2

∑
h≥5

(h− 6) · th(=sb
5 ) = v4(=sb

5 ) + v3(=sb
5 )−

∑
h≥5

(h− 4) · th(=sb
5 ) +

∑
j≥5

vj(=sb
5 ).
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Simplifying both sides,

∑
j≥3

vj(=sb
5 ) =

1

2

∑
h≥5

(−h + 6 + 2h− 8) · th(=sb
5 ) =

1

2

∑
h≥5

(h− 2) · th(=sb
5 ).

Thus, we obtain Proposition 13.
Next, from

∑
j≥4

(j − 3) · vj(=sb
5 ) and Proposition 11,∑

j≥4
(j − 3) · vj(=sb

5 ) = −
∑
j≥4

(2− j) · vj(=sb
5 )−

∑
j≥4

vj(=sb
5 )

= 2− v3(=sb
5 )−

∑
j≥4

vj(=sb
5 )

= 2−
∑
j≥3

vj(=sb
5 ).

Thus, we obtain Proposition 16.
From (12) and Proposition 16,

2−
∑
j≥3

vj(=sb
5 ) = −1

2

∑
h≥5

(h− 6) · th(=sb
5 ).

Thus, we obtain Proposition 15.
From the third equation in Statement 4,

−3v3(=sb
5 ) +

∑
j≥4

(j − 6) · vj(=sb
5 ) + 2

∑
h≥5

(h− 3) · th(=sb
5 ) = 0.

By replacing v3(=sb
5 ) of Proposition 11 in the above equation, it becomes

4
∑
j≥4

(j − 3) · vj(=sb
5 ) = 6− 2

∑
h≥5

(h− 3) · th(=sb
5 ). (15)

Form Proposition 11 and (15),

v3(=sb
5 ) = 2−

∑
j≥4

vj(=sb
5 )−

∑
j≥4

(j − 3) · vj(=sb
5 )

= 1
2 −

∑
j≥4

vj(=sb
5 ) + 1

2

∑
h≥5

(h− 3) · th(=sb
5 ).

Simplifying,

v3(=sb
5 ) +

∑
j≥4

vj(=sb
5 ) =

1

2
+

1

2

∑
h≥5

(h− 3) · th(=sb
5 ).

Thus, we obtain Proposition 14. �

Here, we consider the case of v(=sb
5 ) = 3

2 (i.e., the minimum case of v(=sb
5 )). From

Proposition 15, we have

2 +
1

2

∑
h≥5

(h− 6) · th(=sb
5 ) = 2− 1

2
t5(=sb

5 ) +
1

2

∑
h≥6

(h− 6) · th(=sb
5 ) =

3

2
.

Simplifying this equation,
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t5(=sb
5 ) = 1 +

∑
h≥6

(h− 6) · th(=sb
5 ). (16)

Since
∑
h≥5

th(=sb
5 ) = t5

(
=sb

5

)
+
∑
h≥6

th(=sb
5 ) = 1,

∑
h≥6

(h− 6) · th(=sb
5 ) in (16) is equal to

zero. That is, in the case of v(=sb
5 ) = 3

2 ,
∑
h≥6

th(=sb
5 ) = 0. Therefore, v(=sb

5 ) = 3
2 if

and only if =sb
5 is =sbe

5 .

3.4. Properties of representative periodic tilings by a convex pentagonal

tile. Let =r(x)
5 be a representative periodic tiling by a convex pentagonal tile of type

x. That is, =r(x)
5 for x = 1, . . . , 15 is a strongly balanced tiling by a convex pentagonal

tile. Representative tilings of types 1 or 2 are generally non-edge-to-edge, as shown
in Figure 1. However, in special cases, the convex pentagonal tiles of types 1 or 2 can
generate edge-to-edge tilings, as shown in Figure 5. Here, the convex pentagonal tiles
of (a) and (b) in Figure 5 are referred to as those of types 1e and 2e, respectively.

Then, let =r(1e)
5 and =r(2e)

5 be representative edge-to-edge periodic tilings by a convex
pentagonal tile of types 1e and 2e, respectively.

The properties of each tiling =r(x)
5 are obtained from the results of Section 3.3, etc.

Table 1 summarizes the results [15]. We can check that the representative periodic
tilings of each type of convex pentagonal tile that can generate an edge-to-edge tiling
satisfy Proposition 10.

Figure. 5. Examples of edge-to-edge tilings by convex pentagonal tiles

that belong to types 1 or 2. The pale gray pentagons in each tiling indicate

the fundamental region.

4. Conclusions

In this paper, although it is accepted as a fact, it is proved that the only convex
polygonal tiles that admit at least one periodic tiling are triangles, quadrangles, pen-
tagons, and hexagons. As for the fact (proof) that the only convex polygonal tiles
are triangles, quadrangles, pentagons, and hexagons, note that it is necessary to take
except periodic tilings also into consideration.

Although a solution to the problem of classifying the types of convex pentagonal
tile is not yet in sight, we suggest that the properties that could lead to such a solution
are those that are shown in Section 3.
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